
Chapter 7 

Hilbert Spaces 

7.1 Basic Properties 

Hilbert spaces form a special class of Banach spaces with the geometric 
notion of orthogonality of vectors, or more generally, the notion of an 
angle between vectors, built into them. 

Consider the space R2. If and are vectors 
in M2, then we define the scalar product of these vectors by 

where and is the angle between the two vectors. 
The scalar product is linear in each of the two variables. It is symmetric 
in these variables and It turns out that these properties are 
crucial and we generalize these to other vector spaces. 

Definition 7.1.1 Let V be a real normed linear space. An inner prod­
uct on V is a form (.,.) such that 
(i) it is symmetric, i.e. for all x and 

(ii) it is bilinear: in particular, if x, y and and if a and 
then 

Remark 7.1.1 The linearity with respect to the second variable is, 
clearly, a consequence of conditions (i) and (ii) above. 
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Remark 7.1.2 In case the base field is C, then the inner product is a 
sesquilinear form. If x and we have 

Thus, we have conjugate linearity with respect to the second variable, 
i.e. if x, y and and if and then 

In view of condition (iii), we say that the norm comes from the inner 
product. 

Definition 7.1.2 A Hilbert space is a Banach space whose norm 
comes from an inner product. 

Example 7.1.1 Consider the space For and y 
we define 

This defines an inner product and the norm associated to it is the norm 
||.||2. Thus is a Hilbert space. In the case of Cn , the inner product is 
given by 

Again the norm is 

Example 7.1.2 Consider the space For x and define 

where and are real sequences. Again, if the base field 
is C, then we define 

This makes into a Hilbert space. 
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As we have seen in the previous chapter, these are particular cases 
of the Lebesgue spaces L2. 

Example 7.1.3 Let be a measure space. If f and 
and if and g represent these classes respectively, then 

By virtue of the Poincare inequality (cf. Theorem 6.4.6), the space 
ifg(a, 6) is also a Hilbert space with the inner product 

(7.1.1) 

in the real case; if the field is C then the middle term on the right will 
be replaced by 2Re(x, y), where Re z denotes the real part of a complex 
number z. Writing a similar expression for and adding the two, 
we get 

(7.1.2) 

Let H be a Hilbert space and let x and y € H. Then 

This is known as the parallelogram identity. In case of this 
is the familiar result from plane geometry which relates the sum of the 
squares of the lengths of the diagonals of a parallellogram to that of the 
sides. It is also known as Apollonius' theorem. 

Remark 7.1.3 A theorem of Prechet, Jordan and von Neumann states 
that a Banach space whose norm satisfies the parallelogram identity 

defines an inner product which makes as a Hilbert space. 

Example 7.1.4 Let bea finite interval. We denote by 
the space and by the space Then 

both these spaces are Hilbert spaces with the inner product given by 
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(7.1.2) is a Hilbert space, i.e. the norm comes from an inner product. 

Example 7.1.5 The space C[— 1,1] cannot be made into a Hilbert space. 
To see this, consider the functions 

defined on [—1,1]. Then 1 while we have 

Since we have a quadratic polynomial which is always of constant sign, 
the roots of this polynomial must be complex. Thus, we deduce that 

and the parallelogram identity is not satisfied by this pair of functions. 

Proposition 7.1.1 Every Hilbert space is uniformly convex and hence 
, is reflexive. 

Proof: The proof is of the uniform convexity follows from the par­
allelogram identity (7.1.2) exactly as described in Example 5.5.2; the 
reflexivity now follows from Theorem 5.5.1. 

We now prove a fundamental ineqaulity for Hilbert spaces. 

Theorem 7.1.1 (Cauchy-Schwarz Inequality) Let H be a Hilbert 
space and let x and Then 

Equality occurs in this inequality if, and only if, x and y are scalar 
multiples of each other. 

Proof: Let 9 be a complex number such that and 
Let We have 
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which yields (7.1.3). 
Equality occurs in (7.1.3) if, and only if, the polynomial has two 

coincident roots. Thus, there exists such that or, in other 
words x = ay where 

Corollary 7.1.1 Let H be a Hilbert space. Let y € H. Define 

for all Then and 

Proof: Clearly fy is a linear functional. By the Cauchy-Schwarz in­
equality, we have 

which shows that fy 6 H* and that If , then set 
Then which shows that 

Remark 7.1.4 We will see in the next section that all continuous linear 
functionals on a Hilbert space occur in this manner. 

Corollary 7.1.2 Let H be a Hilbert space and let and 
in H. Then 

Proof: Observe that 

by the Cauchy-Schwarz inequality and the preceding corollary. Now, 
since any weakly converging sequence is bounded and since the 
first term on the right-hand side tends to zero. The second term also 
tends to zero by virtue of the preceding corollary, since in H. 

Remark 7.1.5 Since norm convergence implies weak convergence, it 
follows a fortiori that if and in H, then 
(x,y). 

Theorem 7.1.2 Let H be a Hilbert space and let K C H be a closed 
and convex subset of H. Then, for every x 6 H, there exists a unique 
element such that 

(7.1.4) 
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Further, if H is a real Hilbert space, then PK(X) € K is characterized 
by the following relations: 

(7.1.5) 

for every y € K. 

Proof: Since H is uniformly convex, the existence and uniqueness of 
has been proved in Theorem 5.6.1. Let y € K. For any 0 < t < 1, 

set which belongs to K by convexity. Then, by 
virtue of (7.1.4), 

Squaring both sides, we get 

Cancelling the common term viz. , dividing throughout by 
t and letting , we get (7.1.5). 

Conversely, if is an element satisfying (7.1.5), then, for 
any we have 

Thus PK{x) also satisfies (7.1.4). 

Remark 7.1.6 If H is a complex Hilbert space, then 
is replaced by its real part in (7.1.5). 

Remark 7.1.7 The element which is closest to x in K, is called 
the projection of x onto K. In general, the mapping is not 
linear. In E2 , the condition (7.1.5) means that, for all the lines 
joining x to and y to will always make an obtuse angle. 

We now study some properties of the mapping 

Proposition 7.1.2 Let H be a Hilbert space and let K be a closed and 
convex subset of H. Let be as defined by the preceding 
theorem. Then, for all x and y € H, we have 
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Proof: Assume, for simplicity, that H is a real Hilbert space. By virtue 
of (7.1.5), we have 

and 

Adding these two inequalities, we get 

Thus, 

and the result now follows from the Cauchy-Schwarz inequality being 
applied to the term on the right-hand side. 

Corollary 7.1.3 Let M be a closed subspace of a Hilbert space H. Then 
the projection is a continuous linear mapping. Further, for 
the element is characterized by 

(7.1.6) 

for every y € M. 

Proof: If (7.1.6) holds, then (7.1.5) holds trivially. Conversely, if 
is the projection of x onto then satisfies (7.1.5). 

Let y € M. Set since M is a subspace. Then 
(7.1.5) yields 

for all y € M. Since we also have we get the reverse inequality 
as well and this proves (7.1.6). It now follows from (7.1.6) that is 
a linear map and it is continuous by the preceding proposition. This 
completes the proof. 

Remark 7.1.8 If M is a closed subspace of a Hilbert space H, the 
vector is orthogonal to every vector in M. Thus, is called 
the orthogonal projection of H onto M. 

Theorem 7.1.3 Let H be a Hilbert space and let M be a closed sub-
space, then M is complemented in H. 
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Proof: Set 

It is immediate to check that is a subspace. It is also closed. For, 
let {yn} be a sequence in and let in . If is arbi­
trary, then since (x, yn) = 0 for all n, we get that (x, y) = 0 as well and 
so which establishes our claim. If x € H, then 
and by the preceding corollary. Thus 
Further, if we then have that and so 

Thus and the proof is complete. 

Remark 7.1.9 The subspace consisting of all vectors orthogonal 
to all elements of M is called the orthogonal complement of M. The 
notation is not accidental. We will see in the next section that (at least 
in the case of real Hilbert spaces) the orthogonal complement can be 
identified with the annihilator of M. 

7.2 T h e Dual of a Hilbert Space 

Earlier, we saw that every vector in a Hilbert space gave rise to a con­
tinuous linear functional. The main result of this section is to show that 
all continuous linear functionals arise in this way. 

Theorem 7.2.1 (Riesz Representation Theorem) Let H be a Hilbert 
space. Let Then, there exists a unique vector y € H such that 

(7.2.1) 

for all x € H. Further, 

Proof: We saw that (cf. Corollary 7.1.1), given the functional 
fy defined by 

is in H* and that Thus, the mapping defined 
by is an isometry of H into H* and so its image is closed in 
H*. If we show that the image is dense in H*, then it will follow that 

or, in other words, that is onto and this will complete 
the proof. 

Consider a linear functional on H* which vanishes on Since 
every Hilbert space is uniformly convex and hence, reflexive, this means 

for all 
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that there exists x € H such that for all This implies 
that (x, y) = 0 for all In particular, 

which shows that x = 0, i.e. is zero. This shows that is dense 
in H* and the proof is complete. 

Remark 7.2.1 It is also possible to directly prove this theorem without 
using the reflexivity of H. This will be outlined in the exercises at the 
end of this chapter. 

Remark 7.2.2 Let H be a Hilbert space. Then every element of the 
dual, H*, can be represented as where We can then define 
an inner product on H* by 

It is easy to see that this defines an inner product which gives rise to 
the usual norm on H*. Thus, H* also becomes a Hilbert space in its 
own right. In the same way, H** also becomes a Hilbert space. Now, 
we have two natural mappings from H into H**. The first is the usual 
canonical imbedding The second is the mapping 
i.e. the composition of the Riesz map and that of 
We will show that these are the same. The latter map, by the Riesz 
representation theorem, is onto and so J will be onto, giving another 
proof of the reflexivity of a Hilbert space, provided we prove the Riesz 
representation theorem independently, as suggested in Remark 7.2.1. To 
see that the maps are the same, observe that if then 

This establishes the claim. 

Remark 7.2.3 As a consequence of the Riesz representation theorem, 
the map is an isometry of H onto H*. It is linear if H is real 
and conjugate linear if H is complex. Thus, at least in the real case, we 
can identify a Hilbert space with its own dual via the Riesz isometry. 

Remark 7.2.4 In the case of real Hilbert spaces, while we can identify 
a Hilbert space with its dual, we have to be careful in doing so and 
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we cannot do it to every space under consideration at a time. A typical 
example of such a situation is the following. Let V and H be real Hilbert 
spaces. Let V C H and let V be dense in H. Let us assume further that 
there exists a constant C > 0 such that 

for every 
Let us now identify H* with H via the Riesz representation theorem. 

Let Then the map defines a continuous linear 
functional on V since 

for all v € V. Let us denote this linear functional by T(f). Thus 
and 

If T(f) = 0, then (v, f) = 0 for all and so, by density, we have 
Thus T is one-one as well. Finally, we claim that the image of T 

is dense in V*. Indeed, if vanishes on T(H), then, by reflexivity, 
there exists such that T(f)(v) = 0 for all i.e. 
for all if. Since it follows that i.e. v = 0, which 
means that is idertically zero, which establishes the claim. 

Thus we have the following scheme: 

where both the inclusions are dense. It would now be clearly absurd 
for us to identify V with V* as well. Thus we cannot simultaneously 
identify V and H with their respective duals. The space H in this case 
is called the pivot space and is identified with its dual, whereas the other 
spaces, though they are also Hilbert spaces, will not be identified with 
their respective duals. This situation typically arises when we have a 
parametrized family of Hilbert spaces as in the case of the Sobolev spaces 
(cf. Kesavan [3]). In particular, we can set (cf. Example 
7.1.4) and We identify with its dual while we 
denote the dual of by and we have the inclusions 



7.2 Dual of a Hilbert Space 205 

Let H be a Hilbert space and let For a fixed y € H, 
the map clearly defines a continuous linear functional on 
H and so, by the Riesz representation theorem, this functional can be 
written as the inner product of x with a vector (which depends on y). 
This leads us to the following definition. 

Definition 7.2.1 Let H be a Hilbert space and let A G C(H). We 
define the adjoint of A as the mapping given by 

(7.2.2) 

for all x and 

Remark 7.2.5 In the case of real Hilbert spaces, since H and H* can 
be identified via the Riesz isometry, the map A* is just the adjoint in 
the sense of Definition 4.7.2. 

The following proposition lists the propoerties of the adjoint map. 

Proposition 7.2.1 Let H be a Hilbert space. Let and A be 
continuous linear operators on H. Let a be a scalar. Then 

Then, using (7.2.2) and the Cauchy-Schwarz inequality, we get 

It then follows that if A G C(H), then 

(i) 
(ii) 
(iii) 
(iv) 
(v) . 
(vi) (to be interpreted as in the real case). 

Proof: By the Cauchy-Schwarz inequality, we have for any x G H, 
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Similarly, 

This proves (i). Again, if x and then 

from which, we deduce that 

On the other hand, 

by the Cauchy-Schwarz inequality and we deduce that 

This proves (ii). The other relations follow trivially from (7.2.2). 

Remark 7.2.6 A Banach algebra, B, is said to be a *-algebra if there 
exists a mapping from B into itself satisfying the properties 
analogous to (iii) - (vi) of the above proposition. Such a mapping is said 
to be an involution. If, in addition, properties (i) and (ii) are also true, 
it is said to be a B*-algebra. Thus, if H is a Hilbert space, the C(H) is a 

-algebra with the involution being given by the adjoint mapping. 

Definition 7.2.2 Let H be a Hilbert space and let A is said 
to be self-adjoint if It is said to be normal if AA* = A* A. It 
is said to be unitary if where I is the identity operator 
on H. 

Example 7.2.1 Any orthogonal projection in a Hilbert space is self-
adjoint. If is the orthogonal projection of a Hilbert space 
H onto a closed subspace then, for any x and we have 

by repeated application of Corollary 7.1.3. Since x and y are arbitrary 
elements of H, it follows that P = P*. 
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Example 7.2.2 In the operator defined by a hermetian matrix is 
self-adjoint, that defined by a normal matrix is normal and that defined 
by a unitary matrix (orthogonal matrix, if the base field is R) is unitary 
(cf. Definition 1.1.14). 

Remark 7.2.7 If is a densely defined linear 
transformation in a Hilbert space H, it is easy to see how to define the 
adjoint Again, we have for and 

All the results of Section 4.7, in particular, Proposition 4.7.3 and The­
orem 4.7.1, are true. 

7.3 Application: Variational Inequalities 

Let H be a real Hilbert space and let a(.,.) be a continuous 
bilinear form (cf. Example 4.7.4). Let M > 0 such that 

(7.3.1) 

for all x and Assume further that a(.,.) is (or, coercive; 
cf. Exercise 5.16). Let such that 

(7.3.2) 

for all 

Example 7.3.1 The inner product of a real Hilbert space is a sym­
metric, continuous and coercive bilinear form. Conversely, if a(.,.) is a 
symmetric, continuous and coercive bilinear form, then 

defines a new inner product on H. The associated norm is 

Thanks to the continuity and coercivity of the bilinear form, we have 
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Thus the two norms on H are equivalent. 

Example 7.3.2 Let Let A be an n x n matrix. If x and 
are vectors, define 

where y' is the transpose of the column vector y. Then a(.,.) defines 
a continuous bilinear form on If A is symmetric, then the bilinear 
form is symmetric as well. If A is positive definite, then the bilinear 
form is coercive. 

Theorem 7.3.1 (Stampacchia's Theorem) Let H be a real Hilbert 
space and let be a continuous and coercive bilinear 
form on H (satisfying (7.3.1) and (7.3.2)). Let K be a closed and convex 
subset of H. Let f G H. Then, there exists a unique x G K such that, 
for all 

(7.3.3) 

Proof: Let be fixed. The map is a continuous linear 
functional on H, by the continuity of the bilinear form. Thus, by the 
Riesz representation theorem, there exists A(u) G H such that 

for all . Clearly, the map is linear. Further, by (7.3.1) 
and (7.3.2) we have 

for all u G H. Thus A G C(H). Now, (7.3.3) is equivalent to finding 
x G K such that 

for all y G K. If p > 0 is any constant (to be determined suitably), this 
is equivalent to finding such that 

for all In other words (cf. Theorem 7.1.2), 
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Thus, we seek a fixed point of the mapping Let and 
Then, by Proposition 7.1.2, we have 

Squaring both sides, we get 

using (7.3.1) and (7.3.2). Now, choosing p such that 

we have so that is a contraction. Since 
K is closed, by the contraction mapping theorem (cf. Theorem 2.4.1) 
we deduce that there exists a unique fixed point x G K for S which 
completes the proof. 

Corollary 7.3.1 (Lax-Milgram Lemma) Let H be a Hilbert space 
and let a(.,.) be a continuous and coercive bilinear form. 
Let f € H. Then, there exists a unique such that 

for every y € H. 

Proof: Applying the preceding theorem with K = H, there exists a 
unique x € H satisfying (7.3.3). Replacing y by y + x, we get 

for every y G H. Since well, we also get the reverse inequal­
ity. Hence the result. 

Remark 7.3.1 The Lax-Milgram lemma was already proved in Exercise 
5.16. If, in addition a(.,.) is symmetric, then the preceding results have 
been proved via Exercise 5.17. In that case, the solution x has a varia­
tional characterization, viz. x G K is the minimizer of the functional 
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over K. For this reason, (7.3.3) is called a variational inequality. In the 
terminology of the calculus of variations, (7.3.3) is the equivalent of the 
Euler-Lagrange condition for the minimization of a functional. In the 
case of unconstrained minimization i.e. this becomes an equa­
tion instead of an inequality, as seen in the Lax-Milgram Lemma, and 
corresponds to the vanishing of the 'first variation' of J (cf. Kesavan [4]). 

Indeed, it is easy to see that J is Frechet differentiable (cf. Exercise 
2.38) and that 

for all i and j G X. 

for any x and y G H. Thus (7.3.3) and the Lax-Milgram lemma are just 
the results of Exercise 2.44 when a(.,.) is symmetric. 

The Lax-Milgram lemma forms the basis of a wide class of numeri­
cal methods, known as finite element methods, to solve boundary value 
problems for elliptic partial differential equations (cf. Kesavan [3]). 

Remark 7.3.2 In the symmetric case, as explained in Example 7.3.1, 
a(.,.) defines a new inner product whose norm is equivalent to the usual 
norm. Thus the dual space remains the same and so the Lax-Milgram 
lemma is just a restatement of the Riesz representation theorem. 

7.4 Orthonormal Sets 

As mentioned earlier, orthogonality is a very important notion special to 
Hilbert spaces. In this section, we will take a closer look at this property. 

Definition 7.4.1 Let H be a Hilbert space and let X be an indexing set. 
A subset is said to be orthonormal if 

and 

Remark 7.4.1 If we use the Kronecker symbol, viz. which equals 
unity if i = j and equals zero if then the above relations can be 
written as 

for all 

for all 
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Remark 7.4.2 An orthonormal set of vectors is automatically linearly 
independent. For, if we have a linear relation of the form 

then, taking the inner product with and using the orthonormality of 
the vectors, we get for any 1 < j < n. 

Example 7.4.1 The sequence {en} in (cf. Example 2.3.12) forms an 
orthonormal set. Similarly, the standard basis in Example 1.1.2) 
forms an orthonormal set. 

Example 7.4.2 Consider the interval X = [0,1] endowed with the 
Lebesgue measure. The corresponding space is denoted 
(cf. Section 6.3). The sequence {fn} where fn is the equivalence class 
represented by the function forms an orthonormal 
set. 

Proposition 7.4.1 (Gram-Schmidt Orthogonalization) Let H be 
a Hilbert space and let be a set of linearly independent vec­
tors in H. Then there exists an orthonormal set of vectors 
in H such that, for each 1 < i < n, the vector is a linear combination 
of the vectors 

Proof: Clearly, none of the xi can be the null vector. Define 

Next, consider the vector This vector cannot vanish 
since and are linearly independent and is a scalar multiple of 

Thus, we can define 

It is now immediate to check that and that 
Further, is a linear combination of and since is just a scalar 
multiple of 

We can now proceed inductively. Assume that we have constructed 
the vectors for 1 < k < n — 1. We then define 
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It is now easy to verify that the set verifies the conditions 
mentioned in the statement of the proposition. 

In the exercises at the end of this chapter, we will see important ex­
amples of the Gram-Schmidt orthogonalization process leading to vari­
ous well known special functions of mathematical physics. 

Remark 7.4.3 Consider the space For any 1 < j < n, the 
sets and span the same subspace. Thus, we can 
write 

Let A be the matrix whose columns are the and Q the matrix whose 
columns are the Let R be the matrix whose entries are the For 
any we have that if Thus, R is an upper triangular 
matrix. Further, we see that 

Since the columns of A are linearly independent, the matrix A is in-
vertible. Since the columns of Q are orthonormal, the matrix Q is 
orthogonal. Thus, the Gram-Schmidt orthogonalization process proves 
the following result from matrix theory: every invertible matrix can be 
decomposed into the product of an orthogonal matrix and an upper tri­
angular matrix. 

Remark 7.4.4 The process of producing orthonormal vectors from lin­
early independent ones is quite useful in several contexts. For instance, 
let us consider a continuous function on the interval [0,1]. We wish to 
approximate it by a polynomial. Amongst several ways of doing this, 
one is the least squares approximation. We look for a polynomial p of 
degree at most n such that 

where Vn is the space of all polynomials (in one variable) of degree less 
than or equal to n. In other words, we are looking for the projection of 

onto the subspace of polynomials of degree less than , or equal to, n 
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in the space We know that such a p exists uniquely and that 
it is characterized by (cf. Corollary 7.1.3) 

for all By linearity, it is sufficient to check the above relation 
for just the basis elements of The standard basis of consists of 
the functions po, where 

for and for all 1 < k < n. Writing 

we then derive the following linear system: 

where, is the (n + 1) x (n + 1) matrix given by 

x is the (n + 1) x 1 column vector whose components are the unknown 
coefficients of f is the (n + 1) x 1 column vector whose 
i-th component is 

Solving this linear system yields p. However, especially when n is large, 
the matrix A is known to be very difficult to invert numerically; it is an 
example of what is known as a highly ill-conditioned matrix, i.e. even 
small errors in the data can lead to very large errors in the solution of 
any linear system involving this matrix. 

On the other hand, if we replace the standard basis by a basis con­
sisting of orthonormal polynomials then we can write 
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Now, 

and so 

Thus, without solving any linear system, we can directly compute the 
least squares approximation. 

Example 7.4.3 Let us compute some of the elements of the orthonormal 
set obtained from the standard basis of the space of polynomials of 
degree at most n in L 2 ( - l , 1). Recall that for 0 < i < n. 

Then Thus, 

for all Next, we consider 

Similarly, we can show that 

and so on. 
An easier way of computing these polynomials will be seen in the 

exercises at the end of this chapter. 

Thus for all Now consider the function 

Then, a straight forward computation yields that . 
Thus, for all we get 
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Proposition 7.4.2 Let be a finite orihonormal set in a 
Hilbert space H. Then, for any 

Farther, orthogonal to ej for all 1 < j <n. 

Proof: We know that Expanding this, and 
using the orthonormality of the set, we get (7.4.1) immediately. Further, 

(7.4.1) 

This completes the proof. 

Proposition 7.4.3 Let H be a Hilbert space. Let I be an indexing set 
and let be an orthonormal set in H. Let Define 

(7.4.2) 

Then, S is atmost countable. 

Proof: Define 

By (7.4.1), it follows that has at most n — 1 elements for any positive 
integer n. Since 

it follows that S is at most countable. 

The preceding proposition helps us to define (infinite) sums over 
arbitrary orthonormal sets. Let be an orthonormal set in H 
for an indexing set X. Let We wish to define the sum 

Let S be the set defined by (7.4.2). If S — 0, we define the above sum 
to be zero. If it is a finite set, then the above sum is just the finite sum 
of the corresponding non-zero terms. If it is countably infinite, then we 
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choose a numbering for the elements in the orthonormal 
set whose inner product with x is non-zero. Then we define the above 
sum to be 

The sum is independent of the numbering chosen since this is a series 
of positive terms and so any rearrangement thereof will yield the same 
sum. 

We are now in a position to generalize (7.4.1). 

Theorem 7.4.1 (Bessel's Inequality) Let H be a Hilbert space and 
let be an orthonormal set in H, for some indexing set I. 
L e t . Then 

(7.4.3) 

Proof: Let S be defined by (7.4.2). If S is empty, there is nothing to 
prove. If it is finite, the result is the same as (7.4.1), which has already 
been proved. If is countably infinite, then, since (7.4.1) establishes 
the result for all partial sums, (7.4.3) follows. 

Let an orthonormal set in a Hilbert space H. Given a 
vector x G H, we now try to give a meaning to the sum 

as a vector in H. Once again, let be the set defined by (7.4.2). If it is 
empty, we define the above sum to be the null vector. If it is finite, then 
we define it to be the (finite) sum of the corresponding terms. Let us, 
therefore, assume now that is a countably infinite set. Let us number 
the elements as Define 

If m > n, then 

using the orthonormality of the set. But the sum on the right-hand side 
can be made arbitrarily small for large n and m since it is part of the tail 



7.4 Orthonormal Sets 217 

of a convergent series (cf. (7.4.3)). Thus, the sequence {yn} is Cauchy 
and hence converges to a limit, say, y in H. 

Assume now that the elements of the set E above are rearranged so 
that 

where each is equal to a unique Once again, we define 

As before {y'n} is Cauchy and will converge to an element y' € H. 
We claim that y = y' so that, whatever the manner in which we 

number the elements of E, we get the same limit vector, which we will 
unambiguously define as the required infinite vector sum. 

Let Choose N sufficiently large such that, for all n > N, we 
have 

Fix n> N. Then we can find m > N such that 

Then, the difference will consist of a finite number of terms of 
the form where all the i concerned are greater than n(> N). 
Hence, it follows that 

Thus, 

which proves that y = y' since can be chosen arbitrarily small. 
To sum up, we choose an arbitrary numbering of E and write E = 

and define 

The following result is now an immediate consequence of this defini­
tion and of Proposition 7.4.2. 
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Proposi t ion 7.4.4 Let H be a Hilbert space and let be an 
orthonormal set in H. let Then 

is orthogonal to every 

Definition 7.4.2 An orthonormal set in a Hilbert space is said to be 
complete if it is maximal with respect to the partial ordering on or­
thonormal sets induced by set inclusion. A complete orthonormal set is 
also called an orthonormal basis. 

Proposi t ion 7.4.5 Every Hilbert space admits an orthonormal basis. 

Proof: Given any chain (with respect to the partial ordering induced 
by set inclusion on orthonormal sets), the union of its members gives 
an upper bound. Hence, by Zorn's lemma, there exists a maximal or­
thonormal set. 

Theorem 7.4.2 Let H be a Hilbert space and let be an 
orthonormal set in H. The following are equivalent: 
(i) The orthonormal set is complete. 
(ii) If is such that for all , then x = 0. 
(iii) If , then 

(7.4.4) 

(7.4.5) 
(iv) If x € H, then 

(This is known as Parseval's identity. ) 

Proof: Assume that the orthonormal set is complete and 
that for all If then the set 

is also an orthonormal set strictly larger than the given set which con­
tradicts the maximality of the given set. 
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(ii) (iii). We know that is orthogonal to every 
This immediately gives (7.4.4). 

for all 

(iii) (iv). Set where is a num­
bering of the elements of the set E explained earlier when defining the 
sum Then a straight forward computation yields 

This immediately yields (7.4.5) on passing to the limit as 

(iv) (i). If the given set were not complete, then there exists 
such that and for every But then, this will 
contradict (7.4.5) (applied to the vector e). 

Corollary 7.4.1 Let H be a Hilbert space and let be an 
orthonormal set. It is complete if, and only if, the subspace of all (finite) 
linear combinations of the is dense in H. 

Proof: If the orthonormal set is complete, then by the preceding theo­
rem, every element of H is the limit of finite linear combinations of the 

by (7.4.4) and so the subspace spanned by the is dense in H. 
Conversely, if the subspace spanned by the is dense in H, then if 

x € H is such that it is orthogonal to all the elements of this subspace, 
then x = 0. In particular, if for all then, clearly, x 
is orthogonal to the subspace spanned by the and so it must vanish. 
Thus, statement (ii) of the preceding theorem is satisfied and so the 
orthonormal set is complete. 

Corollary 7.4.2 Let H be a Hilbert space and let be 
a sequence in H which is also an orthonormal basis for H. Then 

Proof: Let Then, by (7.4.5), it follows that as 
Then, by the Riesz representation theorem, it follows that 

Remark 7.4.5 Notice that if {en} is an orthonormal sequence which is 
also complete in a Hilbert space H, then it weakly converges to the null 
vector while it does not have a norm convergent subsequence, since 
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Theorem 7.4.3 A Hilbert space has a countable orthonormal basis if, 
and only if, it is separable. 

Proof: For simplicity, assume that the space is a real Hilbert space. If 
the space has a countable orthonormal basis {en}, then the set of all 
finite linear combinations of the is dense in H, by (7.4.4). The 
set of all finite linear combinations of the {en} with rational coefficients 
then forms a countable dense subset. 

Conversely, assume that the space is separable. Let {xn} be a count­
able dense subset. Consider the balls If 
is an orthonormal set, then, since for it follows that 
each ball can contain at most one element from the orthonormal basis. 
But the set {xn} being dense, each ball must contain some 

or, in other words, each must lie in one of the balls Bn. Thus, the 
orthonormal set can be at most countable. Thus an orthonormal basis 
can also only be at most countable. 

Example 7.4.4 By virtue of (7.4.5), the orthonormal sets in and 
described in Example 7.4.1 are orthonormal bases of those spaces. 

Example 7.4.5 (Fourier series) Consider the space The 
set 

where 

for forms an orthonormal set. By Theorem 6.3.1, the space 
of continuous functions with compact support contained in is 
dense in Such functions vanish at the end points of the in­
terval and so they are 27r-periodic on the interval Con­
sider the space spanned by the orthonormal set mentioned above. By 
an application of the Stone-Weierstrass theorem (cf. Rudin [6]), it fol­
lows that this space is dense in the space of all 27r-periodic continuous 
functions with respect to the sup norm, which is nothing but the norm 

Since the interval has finite measure, this implies that 
this space is dense with respect to the norm ||.||2 as well (cf. Proposition 
6.1.3). This shows that the space spanned by this orthonormal set is 
dense in as well and so, by Corollary 7.4.1, it follows that it 
is a complete orthonormal set in 
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as The analogue of the Parseval identity (7.4.5) reads as 
follows: 

This is an orthonormal set in L2(0,7r) as one can easily verify. Let 
be orthogonal to every element of this set. Extend as an 

by virtue of (7.4.4). This can be rewritten as 

where 

and 

Example 7.4.6 (Fourier sine series) Consider the space 
Consider the set 

Thus if we have that 

This is nothing but the classical Fourier series of a function and the 
and are the usual Fourier coefficients of The 

above series expansion means that the partial. sums of the Fourier series 
converge to in the norm. In other words if 

for then 
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odd function to all the interval Thus, we set if 
Since is an odd function, it follows that 

This is called the Fourier sine series of the function 

By analogy, if H is a separable Hilbert space with an orthonormal 
basis and if we call 

as its Fourier expansion and the coefficients are called its Fourier 
coefficients. 

Remark 7.4.6 Let V be a Banach space and let {en} be a sequence of 
vectors in V such that every vector x G V can be written as 

Then {en} is called a Schauder basis for V. Thus, in every separable 
Hilbert space, an orthonormal basis forms a Schauder basis. The set 
{en} in £p (cf. Example 3.1.1) is a Schauder basis for £p for 1 < p < oo. 

for all Since we also have that 

for all it follows that f = 0 in and so f = 0 in 
as well. Thus, by Theorem 7.4.2 (ii), it follows that the given set is 
complete in In particular, if we can write the 
series expansion 

where 



7.5 Exercises 223 

In the literature, a usual basis of the vector space, i.e. a set of 
linearly independent elements such that every vector is a finite linear 
combination of vectors from the set, is called a Hamel basis. Notice 
that, by Baire's theorem (cf. Exercise 4.1), a Banach space cannot have 
a countable Hamel basis, while it may have a (countable) Schauder bar 
sis. 

In the next chapter we will see how orthonormal bases occur very 
naturally in Hilbert spaces. 

7.5 Exercises 

7.1 Let V be a real Banach space and assume that the parallelogram 
identity holds in V. Define 

where I is the nx n identity matrix. 

Show that this defines an inner product which induces the given norm 
and hence that V is a Hilbert space. 

7.2 Let V be a complex Banach space and assume that the parallelogram 
identity holds in V. Define 

Show that this defines an inner product which induces the given norm 
and hence that V is a Hilbert space. 

7.3 Let H be a Hilbert space and let M be a closed subspace of H. Let 
be the orthogonal projection of H onto M. Show that 

7.4 Let Let be the matrix all of whose entries are equal 
to 1/n. Show that 
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7.5(a) Let if be a Hilbert space and let be a non-zero continuous linear 
functional on H. Let Show that M has codimension one. 
(b) Let be a unit vector such that any can be written as 

where Define Show that x is such that 

for all y € H. (This gives a direct proof of the Riesz representation 
theorem.) 

7.6 Let H be a Hilbert space and let be a unitary operator. 
Show that U is an isometry, i.e. for all 

7.7 Let if be a real Hilbert space and let be a 
continuous and H-elliptic bilinear form (cf. Section 7.3) with constants 
M > 0 (for continuity) and (for ellipticity). Let / G H. 
(a) Let W c H be a closed subspace. Show that there exists a unique 

such that 
(7.5.1) 

for all v e W. 
(b) Show that, if w € W is as above, then 

(c) Let u G if be the unique vector such that 

for all v e H. Show that 

(d) Let if be separable and let be an orthonormal basis for 
H. Let Wn = span Let wn be the solution of (7.5.1) when 
W = Wn. Show that as 
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7.8 Consider the space L2(0,1). Define and 

7.10 Show that the sets 

is a complete orthonormal set in (Thus, a function in 
can be expanded as a series of cosines and this is called its Fourier cosine 
series.) 

7.11 Consider and the linearly independent set of functions 
pn where Applying the Gram-Schmidt orthogonalization 
procedure, we obtain an orthonormal sequence {qn} of polynomials (cf. 
Example 7.4.3). 
(a) Define 

These are the Legendre polynomials. Show that consists only of 
even powers of t when n is even, and of only odd powers of t, when n is 

where XE denotes the characteristic function of a set E. 
(a) Show that 

where sgn(t) equals 1 when t > 0 and equals —1 when t < 0. 
(b) Show that is orthonormal in but that it is not 
complete. 

7.9 Let finite interval and let be an orthonormal 
basis for L2(a,b). Define 

for (t, s) G (a, 6) x (a, b). Show that forms an orthonormal 
basis for 
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odd. 
(b) Show that and that, for n > 1, 

Show that H is a Hilbert space. 
(b) Show that if fn{x) = xn , then f„ belongs to H for every 
(c) Apply the Gram-Schmidt process to the linearly independent set 
{fn} to obtain an orthonormal set hn. Define 

These are the Hermite polynomials. Compute Ho and Hi. 
(d) Prove Rodrigues' Formula: 

7.13 Let and let their Fourier series be given by 

Show that 

for given that Pn(l) = 1 for all n > 0. 
(This gives a simple recursive formula to compute the Legendre polyno­
mials.) (c) Prove Rodrigues' Formula: 

7.12 (a) Consider the space 

and let H be the space of all equivalence classes (with respect to equality 
almost everywhere) of functions in H. Define the inner-product 
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Extend the function to all of R by periodicity, i.e. such that 
f(t) for all Define 

7.14 Compute the Fourier series of the function: 

7.15 Compute the Fourier cosine series of the function f(t) = sint on 

7.16 (a) Compute the Fourier sine series and the Fourier cosine series 
of the function f(t) = t on 
(b) Evaluate: 

using Parseval's identity. 

7.17 (a) Let Let its Fourier series be given by 

Show that is also 27r-periodic. 
(b) Show that its Fourier series is given by 

(c) Show that the above series converges to F uniformly on R. 

7.18 Let Show that if its Fourier series expansion is 
given by 

then the Fourier series expansion of f' is given by 
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7.19 Let H be a Hilbert space and let be a linear 
operator. We say that it is dissipative if for all u € D(A). 
We say that it is maximal dissipative if, in addition 
where I denotes the identity operator on H. Let A be the infinitesimal 
generator of a co-semigroup of contractions (cf. Exercises 4.4, 4.13 and 
4.19) on H. Show that it is maximal dissipative. 

7.20 Let H be a Hilbert space and let be a maximal 
dissipative operator. Show that if is dissipative 
and is an extension of A, i.e. D(A) C D(B) and then 
D(B) = D(A). (This justifies the adjective 'maximal'). 

7.21 Let Hbe a Hilbert space and let A : D(A) C H —• H be a maximal 
dissipative operator. Show that it is closed and densely defined. 

7.22 (a) Let H be a Hilbert space and let be a 
dissipative operator. Let show that 
exists in and that 

(b) If A is a dissipative operator and if for some 
show that for all 
(c) Deduce that if A is a maximal dissipative operator, then 
H for all A > 0. 

Remark 7.5.1 Comparing the results of the above exercises with the 
comments made in Remark 4.8.1, we deduce that an operator A : D(A) c 

will be the infinitesimal generator of a co-semigroup of contrac­
tions if, and only if, it is maximal dissipative. Unlike Banach spaces, 
where the Hille-Yosida theorem involves verification of infinitely many 
conditions, one for each A > 0, this is much easier to verify in Hilbert 
spaces. The dissipativity is usually very easy to check. Further, it 
is enough to verify that the equation (XI — A)x = f has a solution 
x € D(A) for every / € H just for one fixed A > 0. 

7.23 Let be Hilbert spaces with norms 
respectively. Let and be 
closed and densely defined linear transformations. Assume that 
N(S). Assume further, that there exists a constant C > 0 such that, 
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for all n D(T*), we have 

(a) Let and let f* denote the adjoint of 
Show that T* has closed range. 

(b) If is the orthogonal projection, show that 

for all x e D(T*). 
(c) Deduce that T has closed range. 
(d) Show that R(T) = N(S). 

7.24 Let II be a Hilbert space and let GL(H) be the set of all invertible 
continuous linear operators on H. Then GL{H) is a group with respect 
to the binary operation defined via composition of operators. Consider 
the unit circle with its usual topology inherited from K2. Repre­
senting a point as where we have that S1 

is a group under the operation defined via 
A representation of Sl is a group homomorphism 
which is also continuous. For simplicity, we will denote the image of 

(a) Show that every representation is uniformly bounded, i.e. there 
exists a constant C > 0 such that 

for all 
(b) Define 

Show that < .,. > defines a new inner product on H whose induced 
norm is equivalent to the original norm on H. 
(c) With respect to the inner-product < .,. > on H, show that 
is a unitary operator on H for every (We say that every 
representation of S1 is equivalent to a unitary representation.) 

7.25 Let and let {An} be a sequence of N x N matrices such 
that A n = A* for each n. Assume further that, for each we have 
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that the sequence decreases to zero as Show that 
there exists a matrix A = A* such that (Av,v) > 0 for all and 
such that in 


